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SUMMARY:  

Wind turbine wake flow generally has larger turbulence intensity compared with free flow, which would result in 

larger damage to downstream wind turbines. However, there still has no research about wind turbine vibration 

considering wake effect. Meanwhile, although previous research had reduced wind turbine vibration by installing 

dampers, there is still no systematic global optimization method for wind turbine damper. The question that whether 

optimized damper without consideration about wake effect can be directly applied in wind turbines affected by wake 

or not is still not clear. To this end, this study first investigates wake effect on downstream wind turbine vibration. 

Then, tuned mass damper and rotational inerter double tuned mass damper are installed in wind turbine tower to 

control tower vibration. Innovatively, this study proposes a global optimization method for dampers based on radial 

basis function neural network and genetic algorithm, which is significantly accelerated by GPU acceleration 

technology. As well, wake effect on wind turbine dampers is studied by comparing optimized dampers with and 

without consideration of wake. Optimized dampers can reduce at most 44% tower bottom equivalent fatigue load. 

Numerical results can provide references for choosing damper and damper optimization in real engineering.  

 

Keywords: wind turbine, vibration control, wake effect  

 

 

1. INTRODUCTION 

Wind turbine is utilized to harvest wind energy. For more energy output, wind turbine size grows 

rapidly, which causes excessive tower vibrations. Further, long-term vibration results in large 

tower bottom equivalent fatigue load (EFL), which is the primary reason for tower collapsing. 

Thus, investigating wind turbine tower vibration and how to control it get more and more 

important (Fitzgerald and Basu, 2013; Rezaei et al., 2018). 

 

Therefore, this study controls wind turbine fore-aft vibration through installing dampers in it, as 

can be seen in Fig. 1. Both of TMD and rotational inerter double TMD (RIDTMD) are 

investigated. First, upstream wind turbine wake effects on downstream wind turbine vibrations 

are examined. Next, damper parameters are respectively optimized with and without upstream 

wind turbine wake effects. Damper parameters are compared with each other to study wake 

effects on damper optimization. This study innovatively presents an optimization method based 

on radial basis function neural network (RBFNN) and genetic algorithm (GA), which is greatly 

accelerated by GPU (graphic process unit) acceleration technology. Numerical results can help 

engineers properly choose and optimize dampers in real engineering.  



 

 

 
 

Figure 1. (a) TMD in wind turbine nacelle; (b) RIDTMD in wind turbine nacelle. 

 

 

2. NUMERICAL METHODS 

This study presents a novel structural dynamic analysis software for wind turbine (PyGAOWT), 

which is developed on the basis of AOWT (Liu et al., 2020). Fig. 2 (a) and (b) present hardware 

layer and software layer of PyGAOWT, respectively. Benefiting from GPU acceleration 

technology, PyGAOWT has significantly higher computing efficiency, as can be seen in Table 1. 

Meanwhile, this study proposes RBFNN- and GA-based optimization method, as can be seen in 

Fig. 3. Detailed formulae of RBFNN and GA can be referred to the study of Liu et al. (2021b). 

 

 
 

Figure 2. (a) hardware layer of PyGAOWT; (b) Software layer of PyGAOWT. 

 
Table 1. Comparisons of computing efficiency between AOWT and PyGAOWT. 

Number of cases AOWT (min) PyGAOWT (min) AOWT / PyGAOWT 

One single case 40.7 1.7 23.94 

300 cases 12210 6.1 2000 

 

 
 

Figure 3. (a) schematic of RBFNN; (b) Flow chart of GA. 
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4. WAKE EFFECTS ON DAMPER OPTIMIZATION 

There have two wind turbines, which line up along wind propagation direction. Four different 

wind turbine spacings are adopted, which are 2D, 4D, 6D, and 8D with D as wind turbine rotor 

radius. Four different wind speed distributions (C1 – 4) (Liu et al., 2021a) are considered. Wind 

turbine tower EFL are calculated for these four different spacings, when there has no TMD 

installed. EFLs are presented in Fig. 4. It can be stated that when wind turbine spacing is 

approximately 2D, wake effects between the wind turbines should be encountered owing to that 

it can significantly increase wind turbine EFL. Subsequently, PyGAOWT and RBFNN-GA-

based optimization method are utilized to optimize TMD structural parameters when under wind 

conditions C2 – 4 (Liu et al., 2021a). Table 2 lists optimized TMD parameters. Fig. 5 shows EFL 

reduction ratios of these two wind turbines after applying TMD. RBFNN-GA-optimized TMDs 

improve by 13% compared with theoretically optimized ones, and they can reduce at most 40% 

wind turbine tower EFL.  

 

 
 

Figure 4. Wind turbine ELFs without damper when wake effect is considered and not considered. 

 
Table 2. Optimized TMD parameters when under wind conditions C2 – 4. 

Wind turbine 1 Wind turbine 2 

Case name μ v ξ Case name μ v ξ 

C2 0.135 1.01 0.19 C2 0.135 0.97 0.22 

C3 0.135 1.15 0.29 C3 0.135 1.09 0.34 

C4 0.135 0.94 0.11 C4 0.135 1.01 0.26 

 

 
 

Figure 4. EFL reduction ratio with RBFNN-GA-optimized and theoretically optimized TMD. 
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5. COMPARISON BETWEEN TMD AND RIDTMD 

RIDTMD is also applied to control wind turbine tower vibration in this section. In this section, 

wake effects are not considered. Dampers are optimized for only one wind turbine. Wind 

conditions C1 – 4 (Liu et al., 2021a) are adopted again. Optimized TMD and RIDTMD 

parameters are summarized in Table 3. Their corresponding EFL reduction ratios are listed in 

Table 4. TMD performs a little better than RIDTMD. Optimized TMD and RIDTMD can at most 

reduce 44% wind turbine tower EFL when under real wind distributions.  

 
Table 3. Optimized TMD and RIDTMD structural parameters. 

TMD RIDTMD   

Case name μ v ξ Case name μ μ1 ξ β v 

C1 0.2100 1.1751 0.1769 C1 0.2100 1.6000 0.3946 0.9139 1.6000 

C2 0.2089 1.0880 0.3108 C2 0.1886 1.2769 0.1402 0.4407 1.2576 

C3 0.2100 0.9377 0.0882 C3 0.2100 0.6255 0.4390 0.9106 1.5999 

C4 0.1998 0.9896 0.2253 C4 0.2100 0.4695 0.4149 0.1104 1.6000 

 
Table 4. EFL reduction ratios of optimized TMD and RIDTMD. 

TMD 
Wind condition 

RIDTMD 
Wind condition 

C1 C2 C3 C4 C1 C2 C3 C4 

 C1 48.53% 48.97% 36.73% 30.36%  C1 49.03% 48.98% 37.41% 30.68% 

Optimized 

TMD 

C2 49.16% 49.12% 36.35% 31.03% 
Optimized 

RIDTMD 

C2 48.10% 48.07% 38.74% 32.09% 

C3 44.35% 44.28% 41.17% 38.26% C3 43.58% 44.55% 39.63% 39.08% 

C4 41.28% 42.23% 33.98% 44.21% C4 40.96% 41.77% 34.60% 43.59% 

 

 

6. CONCLUSION 

In this study, TMD and RIDTMD are installed at top of wind turbine tower to reduce tower 

vibration. Novel PyGAOWT and RBFNN-GA-based optimization tool are presented. From 

numerical results, following conclusions can be drawn: i) TMD performs a little better than 

RIDTMD, which is more appropriate in wind turbine vibration control; ii) Wind condition 

greatly affect damper optimization result. In real engineering applications, wind turbine damper 

should be optimized correspondingly according to local wind distribution; iii) When wind 

turbine spacing is approximately 2D, wake effects between them should be considered; iv) 

Optimized dampers reduce at mots 44% wind turbine tower EFL in this study.  
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